IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Quantization of kinematics and dynamics on s* with difference operators and a related g-

deformation of the Witt algebra

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1997 J. Phys. A: Math. Gen. 30 6841
(http://iopscience.iop.org/0305-4470/30/19/022)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.110
The article was downloaded on 02/06/2010 at 06:01

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/30/19
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Ger30 (1997) 6841-6859. Printed in the UK PIl: S0305-4470(97)83267-2

Quantization of kinematics and dynamics onS™* with
difference operators and a relatedg-deformation of the
Witt algebra

V K Dobrevf, H-D Doebnet and R Twarock

1 Bulgarian Academy of Sciences, Institute of Nuclear Research and Nuclear Energy,
72 Tsarigradsko Chaussee, 1784 Sofia, Bulgaria

1 Arnold Sommerfeld Institut ir Mathematische Physik, Technische Univétsi€Clausthal,
Leibnizstrasse 10, 38678 Clausthal-Zellerfeld, Germany

Received 9 April 1997

Abstract. Motivated by the fact that momentum observables which are modelled in a classical
theory as difference quotients of functions are directly accessible to measurements, whereas
differentials are mathematical idealizations, which are obtained from difference quotients via a
limiting process, we propose a quantization method in which momentum operators are given in
terms ofg-derivatives, i.e. a particular type of difference quotient, which is particularly suitable
on $1. The quantization scheme is obtained from Borel quantization, in which momentum
operators are given as differential operators, vig@eformation of the kinematical algebra. It

will be applied to a system localized and moving on ftiepoint discretizations}\, of 1 and

leads to a discrete, nonlinear Satinger equation. In the limiy — 1, i.e. the continuous
idealization, we find evolution equations which are special cases of the nonlined&d®Bcjar
equation derived from Borel quantization 64, which is based on the undeformed kinematical
algebra. It turns out that with this procedure both the real and imaginary part of the nonlinearity
can be derived, which without deformation was only possible for the imaginary part. Hence, one
can learn on the situation in the continuous case if it is viewed as a limit ofgtlieformed)

case.

1. Introduction

It is suggestive to describe a physical system in terms of those quantities which are
measurable. We quote in this connection Heisenberg [14]t seems necessary to demand
that no concept enters a theory which has not been experimentally verified at least to the
same degree of accuracy as the experiments explained by the theory’. The measurement
of momentum in classical mechanics in concrete experimental situations is related to two
consecutive positional measuremerfts;) and f (x2), from which momentum is inferred
by the calculation of the corresponding differential quotient
f(x1) f(xz). )
X1 — X2
Hence, it is consequent to model momentum by difference quotients and not by their
mathematical idealization, the differentials. This is a known procedure in classical
mechanics.
In quantum mechanics, positional observables give the probability to find a particle
in a set, call it B, in the (continuous or discrete) configuration spake The
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momentum observables are quantized via differential operators and together with the position
observables they constitute the kinematics of the system. If one accepts that classical
momenta are modelled through difference operators, it is plausible to look for a quantization

of momentum in terms of difference operators. A difference operator can be formulated

on a configuration spac¥ or a suitable discretization aff as follows: take for example

x €R,a >0, then

f(x+d)2—af(x—a) @)

acts also on the discretizati@®), = (na, n € Z) which is adapted to the difference operator.
Hence, a kinematics oM with difference operators leads also to a kinematics on an
appropriate discretization o .

The introduction of difference operators is not unique and one needs a guiding principle.
Here we use the fact that the kinematics of usual quantum mechanics carries a Lie algebra
structure (see subsection 2.1), and we want to use such difference operators that the
corresponding kinematics arises as a deformation with a reasonable algebraic structure.
Here naturally the concept gf-deformation comes in. which means a deformation in the
category of Lie algebras, i.e. a deformation of the commutation relations with a parameter
q € C, so that the new algebra allows for realizations in terms of difference quotients. The
choice of the difference quotients depends also on the structuné. ofn this paper we
discuss the simplest compact manifold, i%8, where multiplicative difference operators,
called ¢-derivatives of the following form arise naturally (the name multiplicative stems
from the fact that it is obtained from (1) witky = gx andx, = ¢—'x, andg-derivative
refers to the fact that the scaling factorgis

Sl —=fl@t 1
Dl = Ty T

Do f(x) =

[N:]f (x) ®)

where
Ny = x0; (4)

is known as the homogeneity operator and

q9“—q°
l[a] =lalg =" ®)
T g—qt
as theg-number of the quantity:, which can be a humber or a diagonal operator ke
In particular, [V,] is composed of shift operatogs™+ which act on functionsf (x) as

N fx) = flgTx). (6)

It will be shown in section 4 that fag an Nth root of unity,D, can be viewed in a natural
way as discrete derivative on theé-point discretizationsy, of S, which is given by the
Nth roots of unity. We remark that-derivatives arise in a natural way in the framework of
guantum groups. In particular, tkenumber notationd] is also used for diagonal operators
already in the defining relations of a quantum group as given by Drinfeld [13].

If the function f depends on two variables, e.f.= f(x, t), we also use the notation
Dy.x, Or D, respectively in order to specify on which variable thelerivative acts. A
similar derivative has been introduced in [6]. It is defined as

_ flgx) — f(x)

Dy f(x) = W (7)
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and is related to¥.] in (3) via

). ®

[Nz] =Dy <61_1+1

The g-deformed kinematical algebra, i.e. the classical observables in termss of
difference operators, are then used to obtain quantum mechanical position and momentum
operators in terms af-derivatives along the lines of Borel quantization (see section 2) and
leads to a discrete Sdadinger equation on thé/-point discretizationSy, of S*. During
this process, calleg-Borel quantization some physically and mathematically motivated
assumptions will be made, which are referred t@g assumptionsbecause they are related
to the introduction of;-derivatives.

As mentioned above, Borel quantization not only covers the kinematics, i.e. position and
momentum observables, but also provides a quantum analogue to Newtonian dynamics in
terms of an evolution (Schdinger) equation for the wavefunction. In the undeformed case
[10] this evolution equation (Doebner—Goldin equation (DG-equation)) contains a nonlinear
complex term, which has been studied recently to some extend (e.g. [8,11,18]). It depends
on a quantum numbeD, which is inherent in Borel quantization. However, only the
imaginary part of the nonlinearity could be derived explicitly and the real part was fixed by
plausible assumptions related to the form of the imaginary part [9].

The discrete Sckidinger equation o153y, obtained viag-Borel quantization, denoted as
the g-Schibdinger equation because it depends on the deformation paraymtev(p(%“),
containsg-difference operators instead of differentials. It displays a peculiarity: it depends
on an additional parametgr € N which was introduced as a mathematical necessity in
connection with thej-deformation of the kinematical algebra (see section 3.1). It introduces
an interaction between the points j = 1, ..., p with x; = ¢/x as discussed in section 4.4.

Furthermore, it turns out that thg-evolution on the latticeSy, is more restricted than
the undeformed DG-equation oft, because it not only reproduces the latter in the limit
g — 1 (or equivalentlyN — oo, becauseg = exp(%)), but also gives an explicit form for
the real part of the nonlinearity, which could not be derived via Borel quantization without
deformation of the kinematical algebra.

A g-deformation of quantum Borel kinematics and a related construction gf a
deformed and lattice dynamics from it have not been discussed befeBeformations
of the Schédinger algebra [7] and of the Sétinger equation [2,17, 20], exist, but were
not linked to the above-mentioned quantization procedure. The construction of a quantum
Borel kinematics on a discrete version §f was also done in [21], but without the more
realisticg-derivatives and without derivation of an evolution equation. For a discussion of
guantum mechanics cm%, in terms ofg-derivatives see also [16].

The paper is organized as follows. In section 2 we introduce the quantum Borel
kinematics and recall the results of the quantum Borel kinematic§ofi2], giving the
position and momentum operators explicitly in terms of the Witt generators and also a
family of nonlinear Schidinger equations. In section 3 we present gitteformation of
the kinematical algebra oS! via a g-deformation of the Witt algebra. In section 4 we
treat the quantum Borel kinematics o, derive a set of nonlinear discrete Satiinger
equations and discuss the lingit— 1. Section 5 contains a summary of the results and an
outlook.
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2. The quantum Borel kinematics onS?

2.1. Introducing Borel quantization

Borel quantization is a quantization procedure which is designed for systems localized on
a continuous configuration manifoldf, especially forM with nontrivial topology. The
kinematical part was introduced in [1] and the dynamical part in [8,10]. We give a short
review of this procedure. Consider the classical position and momentum observables, i.e.
smooth real functiong € C* (M, R) and smooth vector field¥ € Vect(M) on M. These

two mathematical objects span an infinite-dimensional Lie algebra

S(M) :=C®(M,R)&Vect(M) 9)

which is thenatural symmetry algebran M, denoted also as invariance or kinematical
algebra. Quantization of the kinematical algebra means to construct a (quantization) map
from S(M) into the set of selfadjoint operators in some Hilbert space

C®M,R)> fr> Q(f) e SA(H)

(10)
Vect M) 3 X > P(X) € SACH).

With additional, physically motivated assumptions the set of such maps can be obtained and
also classified. The classification depends on the topology @ind furthermore on a new
guantum numbeD e R, which is not related to the topology. These maps are the building
blocks of the dynamics of the system moving #fin the following sense: consider a
classical point-like system, e.g. iR3, with Newtonian evolution equations (mass=1)

X = p, p= F(x, p). They imply for the time dependence of a position observalghr))

the relationf = (gradf)p. As indicated in [10] this leads to the following equation between
matrix elements (Scbdinger representation) and the corresponding quantized operators
given by (10), e.g. for pure stategs € H

d
oV QUHY) = (. P(Xgraar)¥r) Vf e C*@®R%R). (11)

This relation may be viewed as a generalization of the first Ehrenfest relation. It restricts
the time evolution of pure statag and it enforces a nonlinear term in the usual (linear)
Schibdinger equation proportional tdiand an arbitrary nonlinear real part. With some
plausible physical assumptions on the real part, a family of nonlineab8ictyer equations

is obtained (Doebner-Goldin family (DG-family) of Sédinger equations) which contains
the usual linear ones fab = 0. (For more details see [8,9, 18].)

2.2. Borel quantization ot

We describe how Borel quantization works f8t, especially because we will tailor the
g-deformation along the same lines in section 3. &nwe have as position observables
f(¢) and as vector fieldX = X(¢>)d%, where f(¢), X (¢) € C*®(S%, R). Here¢ € [0, 27)

parametrizesS®. They span the kinematical algeb®(S?) = C>(S%, R)& Vect(S1).
We representS(S?) by selfadjoint operators in the Hilbert spaéé(S?t, dp) [12]. The
commutation relations are

[Q(f), 0(®]=0

[P(X), Q(N)] = —i10(Xf) (12)

[P(X), P(Y)] = —iP([X,Y])
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and the representation 6f(S') on C*(S*, R) is given by

[Q(HY](@) = F(D)V ()
[P(X)Y](@) =[—iX + (—3i + D)(divX) + o(X)]¥ ().

Unitarily inequivalent representations are characterized by the quantum nubnleeiR
and by a closed one-form» on S, @ = 6d¢ with 6 < [0, 1), i.e. by two numbers.0
comes in becaus§! is topologically nontrivial. The fact thab is real guarantees that
is selfadjoint.

The operatorP is given in terms of the generators of the so-called Witt algebra, and
together withQ of the inhomogeneous Witt algebra. To see this, we use a Fourier expansion
for f(¢), X(¢) € C®(S, R), i.e. with z := exp(ip)

(13)

f@) = fH"

n=—00

5 (14)
X@)= ) X"
in which f, = f_,, X, = X_, holds. Then (13) yields:
)= Y fud"
e (15)

> d .
P(X) = Z X,z" <Zdz + g +6 +IDn).

n=—00

As mentioned already, for each tuglb, 0), these formulae represent unitarily inequivalent

guantizations.
If we introduce the notation
T, =2z"
d n (16)
Lf=z"(z—+-+6
=2z (z dz + > + )
we have

o =Y fily
. (17)
P(X) = Z X, (LY +iDnT,).

n=—00

If & € R is afixed constant, then the generatdfs and L, = L? fulfil the commutation
relations:
[Tn.T,] =0
[L., Tw] = mTyin (18)
[Lnn Ln] = (I’l - m)Lm+r1~

In this case{L,} span the Witt algebra and;,, L,} the inhomogeneous Witt algebra,
i.e. (T,)&(L,).
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For variable 6 in LY we get a more general algebra:

[T.,.T.] =0
[LZ, Tm] = me+n 19
(n— m)Le3 n#m,b;= 162=mby (19
[Lgl ng] _ m-+n » U3 n—m
e (03 — 01T, n=m

Note that the generatofs for variabled do not form a closed subalgebra; the corresponding
generalized Witt algebra has a more complicated structure than the inhomogeneous Witt
algebra which it contains as a subalgebra. The generalized Witt algebra (19) has another
subalgebra, namely, the one generated7pyL! with rational € Q, i.e. & = p/q,

p,q €Z,q # 0. Then, for6; = p;/q;, i =1,2,3 in (19) we haveps = nqip> — mpiqo,

g3 = q1q2(n — m). We may call this algebra theational Witt algebra It also contains the
inhomogeneous Witt algebra as a subalgebra.

As indicated earlier, different fixed values 6f correspond to unitarily inequivalent
guantizations, and thus the above algebraic structure relates different unitarily inequivalent
quantizations inL?(S*, dg). The sector for fixed is invariant under the innomogeneous
Witt algebra. Analogously, the rational sector withe Q is invariant under the rational
Witt algebra.

For convenience, we give the commutators (12) betw@éri), P(X) in terms of the
L% and T,:

[Q(f), Q)] =0
[P(X). QN =D Xu fu((L). Tl +inD[T,. T,,)) = > X ful Lb. T] = —iQ(Xf)

n,m

[P(X), P(V)] =D X, Yu (L), L] +iD(m[L], T,] —n[L),, T,])) = —i P([X, Y]).

(20)

To define a dynamics on these representations of the kinematical algebra we use the
generalized Ehrenfest relation (see (11))

%(1//@, D), Q(HY (@, 1) = (Y(9, 1), P(Xgradp) ¥ (¢, 1)) VfeCShR), ¢y eH

(21)
where Xgradqr = f(d))%, or, with the probability density for positiong(¢,t) =
v, DY (9, 1),

d - .
a/,o(qb,t)f@b)dq& = —/¢(¢»t)lf’(¢,t)1ﬂ’(¢,t)d¢

+ [« =3 @.ove.n+6r @006 (22)
wherey’ = %' We obtain from (22) after partial integration
[ro=i[rawyem=ti [ raw o [ rav. (29)
Since this has to hold for arbitrary,
p=iWy) + (D=3 — 0@y
= 120/71/// — ") + Dp" — 6p’
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= (' + Do =—%, i’ = jé - Dp. (24)
Here,

6 = 5 = I +0p (25)

is the quantum mechanical current density. Equation (24) is an equation of Fokker—Planck
type for o [8] and restricts the evolution equation fgr.
With the ansatz (wlog)

iy = Hy + Gy, vy
—i0,y = HY + G[y, y1¥
where H is a linear operator, which we will later interpret as Hamiltonian, &fe¢r, ] =

ReG[y, ¥] + ilm G[y, ¥] a nonlinear function ofy, v (possibly also onr and ¢), we
obtain

(26)

p =90 + I =i HD) — J(HY) +2ImG[. ¥]p. (27)
This is an information orf and on the imaginary part af. Together with (24) it gives
. D &
ImG[y, ¥] = ZWIO (28)
and
1d . d
H‘/f:_éw‘ﬁ_wﬁw (29)
or equivalently
Hy =—2 (9 Lig 2 14 30
W——z&w+ >w+ 14 (30)

with a real potentialV, because (27) restrictd ¢ only up to a termey with c € R a
constant. IfD = 0, the nonlinear term I&[v, ¢] vanishes.
The resulting Sclirdinger equation is given byn(= 1,7 = 1)
2

. od . D d? _
oy = w—|9w+u< >w+ReG[w,w]w (31)
—_—

T 2d¢2 dp " 20 \dg2”
R[]

where the real parR[y] of the nonlinear ternG[v, ¥] remains undetermined. However,
if the following additional assumptions are made, which are motivated by the shape of the
imaginary part ofG[y, ],

(i) R[] should be proportional t®, i.e. vanishing forD = 0.

(i) R[y] should have derivatives no higher than of second order and occurring only in
the numerator.

(iii) R[y] should be complex homogeneous of degree zeroRiey] = R[y] for all
a e C.

Then one gets [8] for the real part the following family

" +2 TV n2
P~ 4 py%0 4 p, PP 4 P (32)
o P Jo

RIy]:= D20 + D"
P o
Together with (31) it yields a family of nonlinear Séidinger equations (DG-family) which
depends on five additional real parameters. In this way, we get via Borel quantization with
(20) and (31) a quantum mechanical description of a system localizest.otts physical
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importance lies in the fact that it allows for the description of dissipation and of nonlinear
effects not only ors* but analogously, e.g. dR”. We emphasize, that thgdeformation of

(31) which is derived in the following opens new possibilities which lead to further effects
in g-deformed quantum mechanics.

3. g-Deformation of the representations of the kinematical algebra onS*

In this section we construct@deformation of quantum Borel kinematics 6h We present
plausible arguments and assumptions, denotegl@ssumptionsto replace all derivatives
by more realisticg-derivatives. In the limity — 1 we expect the results obtained in
section 2.2. We parametrize functiogison S* as in section 2 by = exp(i¢). This implies
9y f(¢) =IN. f(z) and ag-analogue is

l
q—q7t
with lim,_1[N;] = N,. It will arise naturally viag-deformation of the kinematical algebra
as presented below.

i[N]f(z) = (f(q2) — fl@*2) (33)

3.1. Theg-Witt algebra and the inhomogeneogdNitt algebra

The kinematical algebra aft* is the inhomogeneous Witt algebra (18) in 2. To introdgee
derivatives, we construct@deformation ofL,, i.e. ag-Witt algebra, which reproduces (19)

in the limit ¢ — 1. There are results on thedeformation of the Witt algebra [3, 15, 19],

but we need a version which is adapted to our purposes, i.e. we makeabsumption

that the deformation should introduce as little extra parameters as possible and no extra
derivatives into the generators. The following 1-parameter set with parameteR, or

J € N will meet these assumptiofis

[ (N:+ 5 +9)]
(/]

The extra parametef is needed to close the-deformed Witt generators!” to a Lie

algebra together with the generatd@tswhich remain undeformed:

LU = zm ) (34)

I S e mTre
; ; 15 — J25 [lir+ 2] L(jitj 15 T 25 L2 = Jul jo—j
[LUs00 | £U202] — [25 — j25 ] Lin + ]E(./1+.zz,93) [ia5 + 25 ] L2 — J ]E%inh,&) (35)

[jallj2] e L]l /2]
with
6y = J101 + j202
Jit 2
. . 36
Oy = J101 — j202 (36)
Ji—J2
for ji1 # j» and
) ) . _ 2 2.’91;(-12 'm . 9 _9
(LU £ = [j(n [1]112)][ J]/:Slin ) 4 [i"% ][[]~](22 1] Tyon (37)
J J

otherwise. Fory = 1 we get (19). We note that oyrWitt algebra closes with respect to
the usual commutator and has a trivial Hopf algebra structure.

1 We note that an ansatz wiﬁj (Nz +5+0+ iDm)] in (15) is possible only iD is imaginary, which, however,
would lead to aP (X) which is not self-adjoint.
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Remark. In [15] another similarg-deformation of the Witt algebra has been presented.
The generators were given by

£ty _ nld N+ )] PN 38
" L1+ [r]+
with two differentg-number notationsn] - = [»#] and
q"+q™"

2
and two parameterg r € R. This choice of a-Witt algebra, however, is not useful here,
because of oug-assumptions.

Concerning the inhomogeneous Witt algebra related to (34) we remark that the first
relation in (18) is not changed, becaugge remains undeformed. Instead of the second
relation in (18) we have using (34):

LY, = T,L404m (40)
which can be expressed as a commutator as follows:
[E(jﬁ)’ T,] = Tn(ﬁ(j,9+n) _ C(j.9)) (41)

So we get for az-deformation of{T?}&{L’} an infinite dimensional vector space spanned

by £{? andT, which is closed as a quadratic algebra. Hence, a deformation of subalgebras
A and B in a semidirect sunA&B vyields a deformation oA@&B only if the deformation
of the semidirect sum is adequately defined, in our example with a quadratic commutator.

3.2. ¢g-Deformation of quantum Borel kinematics §h

We connect the;-deformed{T?}@{L{"}-algebra with ag-deformation of the quantum
Borel kinematics (17). Since the subalgelpfa} is unchanged, we obtain fap(f)

Q,(f)= Y fulu(= Q). (42)

n=—00

For P(X) the situation is complicated because it has projection partd,ih as well as
{L%}. The projection part if{L%} is

o0
P(X)lugy = Y XL (43)

n=—00

A g-deformation according to our deformation rule yields

00
PIOlom = > X LG, "

n=—00

For the projection part if7,},

P(X)liy =i Y X,nDT, (45)

n=—0oo

which formally contains a derivative

P(X)|iry =i(N) Y X,DT, (46)

n=—0oQ
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it is consequent to apply the deformation rule also here. This is aggiassumption We
get

P/(X)lip) =i[N.] Y X,DT, =i > X,[n]DT, (47)

n=—00 n=—00

i.e. the coefficient is replaced by thg-number |]. So we have for thg-quantum Borel
kinematics ors?

]

0,(f)= Y fulu(= Q(f))

o (48)
PIX)= Y X, (LY? +iln]DT,).

These deformed subalgebras can be combined in a semidirect sum and yield the following
commutation relations (note thatis fixed as in (20)):

[Q4(f), Qy(e)] =0 (49)

[P (X), Qg(P] =Y Xufu(LY?, T,,] +i[n] DIT,,, T,,])

n,m

= Z anm[‘cfzjﬂ)’ Tm] (50)

[Py (X), P,(N] =Y X, Yo (L7, LYOL4IDAmI LS, Tl = [WILY, T (51)

n,m

Note that if we use: instead of fi] the corresponding relation for (51) would also hold.
However, in this case, the dynamics 8f derived later (section 4) would be given in terms
of two types of derivatives.

4. q-Deformation of representations of the Borel quantization onS3,

4.1. g-Deformation of quantum Borel kinematics 6

A restriction of the difference operatorN[], which due to (33) are appropriate discrete
analogues for the differential,, onto anN-point discretization?%, of §%, is only possible
for particular values of the deformation parameteiTo see this, parametrize the equidistant

points inSy with / =0, ..., N — 1. The wavefunctiong span a finite dimensional Hilbert
spaceH y of sequencey = (¢ (0), ..., ¥ (N — 1)). With a discrete Fourier transform we
have
N-1 27”
1) = wzrwith 7' = e —nl ). 52
v () ;w,z,w. Z xp(Nn) (52)
The action of iV.] on suchy (1) is i[N.]y (1) = # 3, Vi ((qz)" — (g7 rz)™). Itis only

well defined onS}, if gz andg 'z are again lattice points. Together with the definition of
7= z,l in (52), thisenforcesfor ¢ a value

q = exp (i 2}3) (53)

i.e. ¢ has to be arvth root of unity. We remark that in the representation theory of simple
guantum algebras a choigé’ = 1 is a special case leading to an extra structure, cf e.g.
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[4,5]. Here,g with ¢V = 1 is the natural choice. As a consequence, the limit> 1
coincides with the limitV=— oo.
The scalar product iy is

1 _
W, dla = Z YD) (54)
with
(. 2"a = Lsahm g (55)
[2%] 1d = N 147 — Okm-

For convenience we skip the indéat thez-coordinates and writé (z) or v (1) for ¥ (z;).
On S%, the inhomogeneous Witt algebra is finitely generated and one finds for the symmetry
algebraQ, (f) and P,(X) on Hy (the indexd means discrete)

N-1
QU =Y KT,  (=0()
n=0
Vo1 (56)
PJ(X) =) X, (LY +i[n]DT,).
n=0
Jj has to be restricted t® in order to have an action oﬁj")) on Hy. This is due to
the fact that£$"” contains shift-operators of the forgv":, which applied toy € Hy
give ¢/Neyr () = X, ¥au(g’z)". But for z; as defined in (52) ang given by (53)g’z
is only a lattice point if the above restriction fgris made. The parameter in £
leads to the fact that” contains—dependent oh—differences between different points
of Sy, e.g. between next-nearest neighbours foe= 2 or even further points and not
only nearest neighbourg (= 1). This effect is called topological interaction and will be
discussed in section 4.4 in connection with the dynamics. We recall that the introduction of
j was mathematically necessary in order to closegtiWitt algebra so that this interaction
effect arises naturally. Finally we remark that thuantum Borel kinematics in (56) is
self-adjoint onH .

4.2. g-Deformation of the dynamics of};

The generalized Ehrenfest relation #fy, (compare with (21)) reads

D (W (1. 2), QLW (1. 2))a = (W (1. 2), P Xgraq )W (1. 2))a (57)

where D, denotes the time derivative. In this section we u3e = 9, throughout; a
possible replacement by @derivative is discussed in section 4.3. The opera@ggf)

and Pq’"d (Xgraql r) are given by (56) and the vector fieJdgraql ¢ is derived fromXgraqr Via
a replacement of the derivative bygaderivative (again g-assumptio i.e. in

N-1
[ =)
n=0

(58)
N-1
Xgradf = Z infnz"(iNz)
n=0
we replace: by [n] for the same reasons as in section 3.2. We find with (56)
N-1
P (Xgraq, 1) = Z i[n] £, (LY? +i[n]DT,). (59)

n=0
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We note, that fory = 1 (57) reduces to (21) as expected. For the right-hand side of
(57) one obtains with (59)

. 1 - ) .
(W, P)((Xgrag, )V)a = — Y, ez * (i) £, LYV 2" — D[n)? £,2"2")

N Lk.n,m
k—2m +0)]
Jl

([ j(m+ 155" +6)]
[/l

= % Z &kzikwmsznzni[(k _m)] ([] (m +[

Lk,n,m

+iD[(k — m)])

+iD[(k — m)]) >d.

(60)
Due to (55), all terms withk # n + m are zero and it was thus possible to replacby
k—m.
Using that the left-hand side of (57) can be written as
DY (t,2), Qg(HV (1, 2))a = (f. Di p)a (61)
because the functiong do not depend on (compare with the undeformed case in
section 2.2), we obtain

. k—m
o = B pitce —m) (L O] ). (62)
k,m [J]

For the first term in the bracket on the right-hand side, weqis@mber calculus, i.e. for
a,beC, e e {£1},

[a + b] = [a]g®" + [b]g (63)
in which ¢ opens the possibility for a later appropriate choice. We obtain

, k=m
D ()| LA st Saakd) B o A I B R
k,m k,m

=<f > Pz Y ik — m)]

k,m

[/] [/]

where
Ak, m, j,0) = [K] [j (k+9)] Cemtea U0 [j on +‘9)j|q_*’1" o
9 9 9 2 2
6 ) k+0 6
+[k] [ (m-2'_ )} q*é‘lm £2j( ) [m] [ ( _|2_ )} 761k+5 j( ) (65)

With this, (62) can be written (recall (52)) as

=0 —& N e j Yat?
0 N, 1N +e2j =5
o=t (a7 7) V)
[ (N.+6 S (N;—6) —
_ ([Nz] ]( < + )] w) (q81N1+£2] 5 w)

2
- (g

.0 - (Nz+6) j _
—_ ([NZ] ]2i| CIEZJT.W (q84§N;+51NZI/j)

_([Nz]qu

N,
2
- (Nz+6) N .6 -
+tvdg™ 5w (|55 e w)q“fz}—Dqu]wa (66)
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whereqg*": acts as a shift-operator on functiorigz), i.e.

g™ f(2) = f(q“2). (67)
With the choicesz = —g4 = &5 in (66) 9,0 is real. We introduce the notation
dp = B(ex. £2. j) — DNJ*Y ). (68)

Since [j%] is composed of shiftg 2":, it is only well defined in our discrete setting—
for the same reasons as explained under (56)—if we restrietN further to j € 2N (a
g-assumption

It is interesting to calculate at this stage thcanaloguejg of the quantum mechanical
current density (25) by means of

—i[N:)j = 0,p for D =0. (69)
We obtain:

o= S (20 o) - S (Y5 2]9) ).

(70)

In the limitg — 1, i.e. N — oo, it reproduces the current (25) oY’ = S2.
The D-independent termB(ey, g2, j) of (66) can be simplified, if we decompose
Vo= Y1+ i

1 NZ 1N, —e1N.N iz

+ ([Nz]|: } )((q”N + g NG T )

H(=[N.]g722": [1} ("N + g~ )wl)
F(Ng2 5N y) ([1 > } (g 4 g~ )1#2) }
+COS<82> []Z} {(—[Nz]qsszzz Y@ + g Mg gy (T2)
+ (—INg 5 % ) (@Y + g~ N)g" 7 )
+ (—IN:1g 7 ) (g™ + Ny g 52 % )
+ (—[NJg™ % ) (g + g~y % w}
+sin(?vtez) []Z] {([Nz]q—szf% Y@+ 2 )
+ (—INg 52 % ) (@Y + g5V )go2 % )
+ (INg™ 2 Y (g™ + g~ )g ™ Ty

+ (—[Ng % yn) (@5 + g~ Vo)~ % wz)}'
(72)
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The third and fourth line in (71) are nonlinear, all other terms are linear. The nonlinear
terms are independent 6fand come in addition to the nonlinearity proportionallavhich
arises from theD-dependent term in (68). We assume in the followihg: 0 and indicate

the result fore # 0.

Similarly as (27) in the undeformed case, equation (66) is a constraint for the evolution
equation fory, i.e. for i3, , and in analogy to the construction in section 2.2, the following
ansatz is plausible (compare with (26) and (27)) withlinear iny andG; [y, ¥] nonlinear
in v, ¥,

19,99 = (H]Y)(SY) + (GJ[¥, ¥1¥)(RY)

—id, 9y = (HJY)(SY) + (G, Y1¥) (RY).
Here S and R are shift operators as in (67), which typically occur ig-aleformed theory.
Equation (73) reduces to (26) in the lingit— 1, if H] and G;[y, ¥] are such that they
give H andG[v, ¢] in this limit. Inserting shift operators in (73) is agairgaassumption

The resultingz-Schiodinger equation is nonlinear becausesgf andSy and because of the
nonlinear functionG; [, ¥] of ¥ andy, i.e. the nonlinearity comes from two sources. The

source coming from the shift§ and R vanishes foly — 1—the nonlinear ternGé[x/}, ]
remains. .
With H] = Hy +iHy, Gi[¥, ¥] = G1 +iG, (we skip the index; in the following),
S=2S81+1S8, R=R1+iRy, ¢ as above and with (73) we obtain
dhp = @ V)Y + @YV
= i{(ﬁ,{v‘f)(Sw) + (éélﬁ)(RI/f) - (qulﬂ)(SI/_/) - (Gélﬂ)(Rlﬁ)}
= 2{(H1Yr1) (S2y1 — S1¥2) + (Havr2) (S13h2 — Savr1)
+(Hoyr1) (S1¥1 + Sovr2) + (H12) (S1¢1 + Savr2)}
+2{(G1¥1) (R2yr1 — R1vr2) + (G2vr2) (R1vr2 — Royrn)
H(G2yr) (R1y1 + Ror2) + (G1y2) (R1ys + Ravr2)). (74)

This has to be equated with (68), wheBée1, &2, j) is given by (71). Together with (74)
we conclude for the linear part that

Hy = [N.] []N}

(73)

2
o (75)
S = %(qslN: + qfelNz)quj%
S, =0.

The result is { € 2N, g1, g5 = +1)

2

j N NZ :1— 1 & —&1N;\ € )
afurcsiy = (v |15 [U1e ) Ja s o
%ddeZ obtained in section 2.2.

The defining relation for the nonlinear ter@é[;{?, Y] is given by the last two lines of
(74):
2{(G1y¥r1) (R — R1yro) + (Govr2) (Riy2 — Royry) + (Govrn) (Ruvrn + Rovro)

+(G1v¥2) (R1Y1 + Roy2)} = Giha(Y1, Y2, R1, R2) + Goho(W1, 2, R1, R2)
(77)

which leads for allj in the limit g — 1 to the Hamiltonian—
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where

h1(Yr1, V2, R1, R2) = 2y (R — Raz) + 2y2(Rivn + Rayr2)

ha(Yr1, Y2, R1, R2) = 2y2(Rayz — Royn) + 2¢1(Rivs + Ravr2).
This has to be equated with the nonlinear terms in (68), hence with

C(e1, &2, j) — D(IN:I?p) (79)
whereC (eq, €2, j) is given by the third and fourth line in (71), i.e. the nonlinear terms in
B(e1, €2, j):

j N.
C(e1, €2, j) = {(—[Nz]qEZZNzw) ([12‘] (q"N + q"fl”f)wl)

(78)

2

_ 1 . e24 N, . N; &1N, —e1N.\ .7
—Zi{( [N:]q W([} 2}@1 +q )1//)

J N,
+([N-1g°22 1) ([1 } (@™ + 9_81N3)1ﬂ2> }

in - N,
savdg= ([ | @ oo ) | 80)

Dependent on the choice of the shift(¢g-assumptiol different values foiG; and G, can

be derived from the last line in (77) together with (79).; and G, so obtained lead to
the nonlinear term in thg-Schibdinger equation (73) via the relation (compare with the
notation above (74))

Fyr = (Gl[Y, ¥1¥)(RY) = (G1+1G)Y)(R1+ 1R Y. (81)
We emphasize that the nonlinear teffy; depends on the choices f&; and R,.
A calculation shows that in the limif — 1, the nonlinearity is independent gne 2N.
One always obtains the same imaginary part for the nonlinear functional, i.e. (28) which was
also derived without-deformation. In addition, three types of real parts occur. With the
notationR = R1+iRy = (aq*V:+bgPN*)+i(cq”-+dg®"-) (recall also thaty = yrq+ivr),
these limits are (for different, b, ¢, d, «, B, v, §) given by

0}
PRl 2 (82)
vy =Yy’
. _ &jla+b) _ _ —e2jlc+d) ; _ _ _ 1
with A= 8(3%2,3) if R, =0andA = B(C;Js) if R1=0.If R =251, A= 3 holds.
(i)
D "
B=r (83)
2p

i.e. equal to the limit of the imaginary part, with = i%. In the special case
Ry = R, =1, B = £1 respectively.

(iii) For R = 1 (trivial shift operator) the real part remains undetermined by (74) as in
the undeformed case.

Finally, we give the result foé # O:

. - N |, .._ - N I I N P e
(3, y)¥ = ([Nz] [jz}m 1w) (Slw)—l[JZ][J] 1{q 220 (I[N, ]g~*22"-y)
g2t ([ N]g 2Ny ) g 2 }(Suz) + Fy. (84)

with §1 = (g% + q~*No)g®2i % | It is discussed in section 4.4.
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4.3. g-Deformation of the time-derivative

So far, we have considered the usual time-derivative However, it is also possible to
replace it by ag-time derivative. This could be useful in the following sense. If we
chooseR = S = §; in (73) (which means that the real part of the nonlinearity is given
by (82)), then it is reasonable to ask whether one can constrDgt, avhich compensates
this shift. The occurrence of a space shiftdyp, is in principle possible and sometimes
even necessary [7]. It relates thend ¢-dependence of/ (¢, r) and leads to a restriction
of the evolution equation. Thig-assumption corresponds to the following ansatz for a
g-Schidinger equation

(ADy )T oY) = (H]Y)(SY) + (G ) (RY)
—(iDg )T oY) = (H]Y)(S¥) + (G ) (RY)
whereY, S and R are shifts in space anifl and T in time. One can choosE = R = § =

S1 = 3(g*™: +g~51N) g2/ % (compare with (75))D, ; is constructed by a ‘shifted Leibniz
rule’ of the form

Dy (W) = (Dg: ¥)(T 0 YY) + Dy ¥)(T 0 Y) (86)

and is given by

(85)

Tf(z)—Tf()
— q—l

i.e. it is defined by the time shifts. With (86) and (66) we obtain the samedSiciger

equation in the limity — 1 as before, although thgassumptions are different.

Dg.r = S1 (87)

4.4. Discussion of the-Schiodinger equation

The set ofg-Schibdinger equations (84) consists of nonlinear difference equations which
contain the parametef. For ¢ — 1, some of the nonlinearities vanish, but tiie
dependence remains also in the continuous case. It is remarkable that-fer1l for
all choices forR and S the same nonlinear imaginary part, given by (28), is obtained.
Since j occurs in the evolution equations in the combinatiémf{], its interpretation
is the following: whereas difference operators,] usually operate on nearest-neighbour
points, also difference operators involving next nealgst 4) and further points come
into play, here. Thus the parametgrwhich was introduced as a mathematical necessity
in (34) in order to close thg-Witt algebra, indicates the range of the interaction between
points in S,%,. In particular, the range of the interaction blows up wijth
It is instructive to write the set af-Schibdinger equations (84) directly as a difference
equation in dependence ¢f We find

_ 1
i0; v (I l) = - — .
WOV O =24 —4 @ —a)

T R )
) ) s -507)
P 9o 7)
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- &2 - 73} 1
(w(l+1+2>+w<l_1+2))2(q—q‘1)

.0 -1 e2d0 3271 _ _ SLJ
oo ene 7)o (-107)

- £2j - €2 1
(w(z+1—2>+w<l—1—2))2(q_q_1)+FNL. (88)

The Hamiltonian relates Vi, the pointd + 2,/ and! — 2 independently of. In addition,
the pointd +1+%, [+1-%,/—14-4 and/—1- are related, i.e. the coefficieptdetermines
the range of ‘the interaction’ (as shown in figure 1). \Ag, no further dependences are
introduced and none are cancelled. To calculate the ljmit 1 one should use the Fourier
transformyr (I +m) = Y0 Y., exp(Zin) exp(Zlim) = Y05 Yiaziq™ to exhibit the
g-dependence.

It is difficult to decide on the range of the interaction, i.e. ¢n by physical
considerations. Thus, it is suggestive—also in view of the physical meaning of the algebra
generated by (49-51)—to assume that jalhave to be treated on an equal footing, i.e. a
democratic regime

1 .
Hy = Z HJ. (89)
This is consistent with our theory and the nonlinear p%értand qu can be treated similarly.

5. Summary and outlook

The observation that measurements of momentum are related in classical physics to
two consecutive positional measurements have led us to the use of difference operators
for quantum mechanical momentum observables instead of differential operators. The
introduction of particular difference quotients calledderivatives was realized via a
g-deformation of the kinematical algebra &ft, i.e. the inhomogeneous Witt algebra,

and implemented in the framework of Borel quantization of a system moving on the
simplest compact configuration space, the cirsfeand its N-point discretizationS? .

Some additional assumptions, callgeassumptions, were necessary to get a reasonable
g-deformation, similarly as for the nondeformed case some (but different) assumptions are
necessary to get a reasonable quantization. The generalized Ehrenfest theorem could be
formulated also in the deformed case 6§ and it has been an implicit condition for

the evolution equation foty, which has led to a set of difference Sotlinger equations
parametrized by; € N, which are highly nonlinear difference equations for the time
evolution.

Figure 1. The broken lines give the interaction range for= 0. The dotted lines indicate
which interactions appear in addition fér = 0.
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This last part is oparticular interest. Foy — 1, the different time evolutions give the
usual Schiadinger equation, but with a fixed imaginaand real nonlinear termgepending
on theg-assumptionsBorel quantization ors* gives the same result, but with an arbitrary
real nonlinear term. So, thg-assumptions, necessary for our procedure, leaq fer 1 to
a fixed nonlinear term in the Sdfdinger equation, which means that one can learn on the
continuous case if it is viewed as a limit of thedeformed case.

We emphasize that the Sddlinger equation derived vig-deformation already on the
level of the quantization of the kinematical algebra as presented here differs qualitatively
from those approaches, where discretization takes place via a substitution of differentials
by g-derivatives in the Sckidinger equation. The latter would lead in the framework of
Borel quantization as presented in section 2 (fbr= 0) via a replacement o&% by the
g-derivativeD, in (3), to ag-Schiddinger equation of the form

i3, (I) = —3D2 ¥ (1) — 6D, ¥ (1) (90)

which differs considerably from our result (84).

Finally, we remark that our discussion is valid for a particular configuration sgce,
and its discretization; it would be interesting to derive a similar result for more general
configuration spaces. We leave this issue for a future investigation.
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