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Abstract. Motivated by the fact that momentum observables which are modelled in a classical
theory as difference quotients of functions are directly accessible to measurements, whereas
differentials are mathematical idealizations, which are obtained from difference quotients via a
limiting process, we propose a quantization method in which momentum operators are given in
terms ofq-derivatives, i.e. a particular type of difference quotient, which is particularly suitable
on S1. The quantization scheme is obtained from Borel quantization, in which momentum
operators are given as differential operators, via aq-deformation of the kinematical algebra. It
will be applied to a system localized and moving on theN -point discretizationS1

N of S1 and
leads to a discrete, nonlinear Schrödinger equation. In the limitq → 1, i.e. the continuous
idealization, we find evolution equations which are special cases of the nonlinear Schrödinger
equation derived from Borel quantization onS1, which is based on the undeformed kinematical
algebra. It turns out that with this procedure both the real and imaginary part of the nonlinearity
can be derived, which without deformation was only possible for the imaginary part. Hence, one
can learn on the situation in the continuous case if it is viewed as a limit of the (q-deformed)
case.

1. Introduction

It is suggestive to describe a physical system in terms of those quantities which are
measurable. We quote in this connection Heisenberg [14] ‘. . . it seems necessary to demand
that no concept enters a theory which has not been experimentally verified at least to the
same degree of accuracy as the experiments explained by the theory’. The measurement
of momentum in classical mechanics in concrete experimental situations is related to two
consecutive positional measurementsf (x1) andf (x2), from which momentum is inferred
by the calculation of the corresponding differential quotient

D∗ f := f (x1)− f (x2)

x1− x2
. (1)

Hence, it is consequent to model momentum by difference quotients and not by their
mathematical idealization, the differentials. This is a known procedure in classical
mechanics.

In quantum mechanics, positional observables give the probability to find a particle
in a set, call it B, in the (continuous or discrete) configuration spaceM. The
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momentum observables are quantized via differential operators and together with the position
observables they constitute the kinematics of the system. If one accepts that classical
momenta are modelled through difference operators, it is plausible to look for a quantization
of momentum in terms of difference operators. A difference operator can be formulated
on a configuration spaceM or a suitable discretization ofM as follows: take for example
x ∈ R, a > 0, then

Da f (x) = f (x + a)− f (x − a)
2a

(2)

acts also on the discretizationRa = (na, n ∈ Z) which is adapted to the difference operator.
Hence, a kinematics onM with difference operators leads also to a kinematics on an
appropriate discretization ofM.

The introduction of difference operators is not unique and one needs a guiding principle.
Here we use the fact that the kinematics of usual quantum mechanics carries a Lie algebra
structure (see subsection 2.1), and we want to use such difference operators that the
corresponding kinematics arises as a deformation with a reasonable algebraic structure.
Here naturally the concept ofq-deformation comes in. which means a deformation in the
category of Lie algebras, i.e. a deformation of the commutation relations with a parameter
q ∈ C, so that the new algebra allows for realizations in terms of difference quotients. The
choice of the difference quotients depends also on the structure ofM. In this paper we
discuss the simplest compact manifold, i.e.S1, where multiplicative difference operators,
called q-derivatives, of the following form arise naturally (the name multiplicative stems
from the fact that it is obtained from (1) withx1 = qx and x2 = q−1x, andq-derivative
refers to the fact that the scaling factor isq):

Dq f (x) := f (qx)− f (q−1x)

(q − q−1)x
= 1

x
[Nx ]f (x) (3)

where

Nx := x∂x (4)

is known as the homogeneity operator and

[a] = [a]q := qa − q−a
q − q−1

(5)

as theq-number of the quantitya, which can be a number or a diagonal operator likeNx .
In particular, [Nx ] is composed of shift operatorsq±Nx which act on functionsf (x) as

q±Nxf (x) = f (q±x). (6)

It will be shown in section 4 that forq anN th root of unity,Dq can be viewed in a natural
way as discrete derivative on theN -point discretizationS1

N of S1, which is given by the
N th roots of unity. We remark thatq-derivatives arise in a natural way in the framework of
quantum groups. In particular, theq-number notation [a] is also used for diagonal operators
already in the defining relations of a quantum group as given by Drinfeld [13].

If the functionf depends on two variables, e.g.f = f (x, t), we also use the notation
Dq,x , or Dq,t respectively in order to specify on which variable theq-derivative acts. A
similar derivative has been introduced in [6]. It is defined as

DJ f (x) := f (qx)− f (x)
(q − 1)x

(7)
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and is related to [Nz] in (3) via

[Nz] = DJ

(
q−Nz + 1

q−1+ 1

)
. (8)

The q-deformed kinematical algebra, i.e. the classical observables in terms ofq-
difference operators, are then used to obtain quantum mechanical position and momentum
operators in terms ofq-derivatives along the lines of Borel quantization (see section 2) and
leads to a discrete Schrödinger equation on theN -point discretizationS1

N of S1. During
this process, calledq-Borel quantization, some physically and mathematically motivated
assumptions will be made, which are referred to asq-assumptions, because they are related
to the introduction ofq-derivatives.

As mentioned above, Borel quantization not only covers the kinematics, i.e. position and
momentum observables, but also provides a quantum analogue to Newtonian dynamics in
terms of an evolution (Schrödinger) equation for the wavefunction. In the undeformed case
[10] this evolution equation (Doebner–Goldin equation (DG-equation)) contains a nonlinear
complex term, which has been studied recently to some extend (e.g. [8, 11, 18]). It depends
on a quantum numberD, which is inherent in Borel quantization. However, only the
imaginary part of the nonlinearity could be derived explicitly and the real part was fixed by
plausible assumptions related to the form of the imaginary part [9].

The discrete Schrödinger equation onS1
N obtained viaq-Borel quantization, denoted as

theq-Schr̈odinger equation because it depends on the deformation parameterq = exp( 2π i
N
),

containsq-difference operators instead of differentials. It displays a peculiarity: it depends
on an additional parameterj ∈ N which was introduced as a mathematical necessity in
connection with theq-deformation of the kinematical algebra (see section 3.1). It introduces
an interaction between the pointsxj , j = 1, . . . , p with xj = qjx as discussed in section 4.4.

Furthermore, it turns out that theq-evolution on the latticeS1
N is more restricted than

the undeformed DG-equation onS1, because it not only reproduces the latter in the limit
q → 1 (or equivalentlyN →∞, becauseq = exp( 2π i

N
)), but also gives an explicit form for

the real part of the nonlinearity, which could not be derived via Borel quantization without
deformation of the kinematical algebra.

A q-deformation of quantum Borel kinematics and a related construction of aq-
deformed and lattice dynamics from it have not been discussed before.q-Deformations
of the Schr̈odinger algebra [7] and of the Schrödinger equation [2, 17, 20], exist, but were
not linked to the above-mentioned quantization procedure. The construction of a quantum
Borel kinematics on a discrete version ofS1 was also done in [21], but without the more
realisticq-derivatives and without derivation of an evolution equation. For a discussion of
quantum mechanics onS1

N in terms ofq-derivatives see also [16].
The paper is organized as follows. In section 2 we introduce the quantum Borel

kinematics and recall the results of the quantum Borel kinematics onS1 [12], giving the
position and momentum operators explicitly in terms of the Witt generators and also a
family of nonlinear Schr̈odinger equations. In section 3 we present ourq-deformation of
the kinematical algebra onS1 via a q-deformation of the Witt algebra. In section 4 we
treat the quantum Borel kinematics onS1

N , derive a set of nonlinear discrete Schrödinger
equations and discuss the limitq → 1. Section 5 contains a summary of the results and an
outlook.
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2. The quantum Borel kinematics onS1

2.1. Introducing Borel quantization

Borel quantization is a quantization procedure which is designed for systems localized on
a continuous configuration manifoldM, especially forM with nontrivial topology. The
kinematical part was introduced in [1] and the dynamical part in [8, 10]. We give a short
review of this procedure. Consider the classical position and momentum observables, i.e.
smooth real functionsf ∈ C∞(M,R) and smooth vector fieldsX ∈ Vect(M) onM. These
two mathematical objects span an infinite-dimensional Lie algebra

S(M) := C∞(M,R)⊂+ Vect(M) (9)

which is thenatural symmetry algebraon M, denoted also as invariance or kinematical
algebra. Quantization of the kinematical algebra means to construct a (quantization) map
from S(M) into the set of selfadjoint operators in some Hilbert spaceH

C∞(M,R) 3 f 7→ Q(f ) ∈ SA(H)
Vect(M) 3 X 7→ P(X) ∈ SA(H). (10)

With additional, physically motivated assumptions the set of such maps can be obtained and
also classified. The classification depends on the topology ofM and furthermore on a new
quantum numberD ∈ R, which is not related to the topology. These maps are the building
blocks of the dynamics of the system moving onM in the following sense: consider a
classical point-like system, e.g. inR3, with Newtonian evolution equations (massm=1)
ẋ = p, ṗ = F(x, p). They imply for the time dependence of a position observablef (x(t))

the relationḟ = (gradf )p. As indicated in [10] this leads to the following equation between
matrix elements (Schrödinger representation) and the corresponding quantized operators
given by (10), e.g. for pure statesψ ∈ H

d

dt
〈ψ,Q(f )ψ〉 = 〈ψ,P (Xgradf )ψ〉 ∀f ∈ C∞(R3,R). (11)

This relation may be viewed as a generalization of the first Ehrenfest relation. It restricts
the time evolution of pure statesψ and it enforces a nonlinear term in the usual (linear)
Schr̈odinger equation proportional to iD and an arbitrary nonlinear real part. With some
plausible physical assumptions on the real part, a family of nonlinear Schrödinger equations
is obtained (Doebner–Goldin family (DG-family) of Schrödinger equations) which contains
the usual linear ones forD = 0. (For more details see [8, 9, 18].)

2.2. Borel quantization onS1

We describe how Borel quantization works forS1, especially because we will tailor the
q-deformation along the same lines in section 3. OnS1, we have as position observables
f (φ) and as vector fieldsX = X(φ) d

dφ , wheref (φ), X(φ) ∈ C∞(S1,R). Hereφ ∈ [0, 2π)

parametrizesS1. They span the kinematical algebraS(S1) = C∞(S1,R)⊂+ Vect(S1).
We representS(S1) by selfadjoint operators in the Hilbert spaceL2(S1, dφ) [12]. The
commutation relations are

[Q(f ),Q(g)] = 0

[P(X),Q(f )] = −iQ(Xf )

[P(X), P (Y )] = −iP([X, Y ])

(12)
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and the representation ofS(S1) on C∞(S1,R) is given by

[Q(f )ψ ](φ) = f (φ)ψ(φ)
[P(X)ψ ](φ) = [−iX + (− 1

2i +D)(divX)+ ω(X)]ψ(φ). (13)

Unitarily inequivalent representations are characterized by the quantum numberD ∈ R
and by a closed one-formω on S1, ω = θdφ with θ ∈ [0, 1), i.e. by two numbers.θ
comes in becauseS1 is topologically nontrivial. The fact thatD is real guarantees thatP
is selfadjoint.

The operatorP is given in terms of the generators of the so-called Witt algebra, and
together withQ of the inhomogeneous Witt algebra. To see this, we use a Fourier expansion
for f (φ), X(φ) ∈ C∞(S1,R), i.e. with z := exp(iφ)

f (φ) =
∞∑

n=−∞
fnz

n

X(φ) =
∞∑

n=−∞
Xnz

n

(14)

in which fn = f̄−n, Xn = X̄−n holds. Then (13) yields:

Q(f ) =
∞∑

n=−∞
fnz

n

P (X) =
∞∑

n=−∞
Xnz

n

(
z

d

dz
+ n

2
+ θ + iDn

)
.

(15)

As mentioned already, for each tuple(D, θ), these formulae represent unitarily inequivalent
quantizations.

If we introduce the notation

Tn = zn

Lθn = zn
(
z

d

dz
+ n

2
+ θ

)
(16)

we have

Q(f ) =
∞∑

n=−∞
fnTn

P (X) =
∞∑

n=−∞
Xn(L

θ
n + iDnTn).

(17)

If θ ∈ R is a fixed constant, then the generatorsTn andLn ≡ Lθn fulfil the commutation
relations:

[Tm, Tn] = 0

[Ln, Tm] = mTm+n
[Lm,Ln] = (n−m)Lm+n.

(18)

In this case{Ln} span the Witt algebra and{Tn, Ln} the inhomogeneous Witt algebra,
i.e. {Tn}⊂+{Ln}.
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For variable θ in Lθn we get a more general algebra:

[Tm, Tn] = 0

[Lθn, Tm] = mTm+n

[Lθ1
m,L

θ2
n ] =

{
(n−m)Lθ3

m+n n 6= m, θ3 = nθ2−mθ1
n−m

(θ2− θ1)nT2n n = m .

(19)

Note that the generatorsLθn for variableθ do not form a closed subalgebra; the corresponding
generalized Witt algebra has a more complicated structure than the inhomogeneous Witt
algebra which it contains as a subalgebra. The generalized Witt algebra (19) has another
subalgebra, namely, the one generated byTn, L

θ
n with rational θ ∈ Q, i.e. θ = p/q,

p, q ∈ Z, q 6= 0. Then, forθi = pi/qi , i = 1, 2, 3 in (19) we havep3 = nq1p2 − mp1q2,
q3 = q1q2(n−m). We may call this algebra therational Witt algebra. It also contains the
inhomogeneous Witt algebra as a subalgebra.

As indicated earlier, different fixed values ofθ correspond to unitarily inequivalent
quantizations, and thus the above algebraic structure relates different unitarily inequivalent
quantizations inL2(S1, dφ). The sector for fixedθ is invariant under the inhomogeneous
Witt algebra. Analogously, the rational sector withθ ∈ Q is invariant under the rational
Witt algebra.

For convenience, we give the commutators (12) betweenQ(f ), P(X) in terms of the
Lθn andTn:

[Q(f ),Q(g)] = 0

[P(X),Q(f )] =
∑
n,m

Xnfm([L
θ
n, Tm] + inD[Tn, Tm]) =

∑
n,m

Xnfm[Lθn, Tm] = −iQ(Xf )

[P(X), P (Y )] =
∑
n,m

XnYm([L
θ
n, L

θ
m] + iD(m[Lθn, Tm] − n[Lθm, Tn])) = −iP([X, Y ]).

(20)

To define a dynamics on these representations of the kinematical algebra we use the
generalized Ehrenfest relation (see (11))

d

dt
〈ψ(φ, t),Q(f )ψ(φ, t)〉 = 〈ψ(φ, t), P (Xgradf )ψ(φ, t)〉 ∀f ∈ C∞(S1,R), ψ ∈ H

(21)

where Xgradf = f ′(φ) d
dφ , or, with the probability density for positionsρ(φ, t) =

ψ̄(φ, t)ψ(φ, t),

d

dt

∫
ρ(φ, t)f (φ)dφ = −

∫
ψ̄(φ, t)if ′(φ, t)ψ ′(φ, t)dφ

+
∫
((D − 1

2i)f ′′(φ, t)ψ(φ, t)+ θf ′(φ, t)ψ(φ, t))dφ (22)

whereψ ′ ≡ dψ
dφ . We obtain from (22) after partial integration∫

f ρ̇ = i
∫
f (ψ̄ψ ′)′ + (D − 1

2i)
∫
f (ψ̄ψ)′′ − θ

∫
f (ψ̄ψ)′. (23)

Since this has to hold for arbitraryf ,

ρ̇ = i(ψ̄ψ ′)′ + (D − 1
2i)(ψ̄ψ)′′ − θ(ψ̄ψ)′

= i

2
(ψ̄ψ ′′ − ψ̄ ′′ψ)+Dρ ′′ − θρ ′
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= −(j θ0 )′ +Dρ ′′ = −(j θ )′, j θ = jθ0 −Dρ ′. (24)

Here,

jθ0 =
i

2
(ψ̄ ′ψ − ψ̄ψ ′)+ θρ (25)

is the quantum mechanical current density. Equation (24) is an equation of Fokker–Planck
type for ρ̇ [8] and restricts the evolution equation forψ .

With the ansatz (wlog)

i∂tψ = Hψ +G[ψ̄, ψ ]ψ

−i∂t ψ̄ = H̄ ψ̄ + Ḡ[ψ̄, ψ ]ψ̄
(26)

whereH is a linear operator, which we will later interpret as Hamiltonian, andG[ψ̄, ψ ] ≡
ReG[ψ̄, ψ ] + i ImG[ψ̄, ψ ] a nonlinear function ofψ̄ , ψ (possibly also ont andφ), we
obtain

ρ̇ = ˙̄ψψ + ψ̄ψ̇ = i(ψ(H̄ ψ̄)− ψ̄(Hψ))+ 2 ImG[ψ̄, ψ ]ρ. (27)

This is an information onH and on the imaginary part ofG. Together with (24) it gives

ImG[ψ̄, ψ ] = D

2ρ

d2

dφ2
ρ (28)

and

Hψ = −1

2

d2

dφ2
ψ − iθ

d

dφ
ψ (29)

or equivalently

Hψ = −1

2

(
d

dφ
+ iθ

)2

ψ + Vψ (30)

with a real potentialV , because (27) restrictsHψ only up to a termcψ with c ∈ R a
constant. IfD = 0, the nonlinear term ImG[ψ̄, ψ ] vanishes.

The resulting Schr̈odinger equation is given by (m = 1, h̄ = 1)

i∂tψ = −1

2

d2

dφ2
ψ − iθ

d

dφ
ψ + i

D

2ρ

(
d2

dφ2
ρ

)
ψ + ReG[ψ̄, ψ ]︸ ︷︷ ︸

R[ψ ]

ψ (31)

where the real partR[ψ ] of the nonlinear termG[ψ̄, ψ ] remains undetermined. However,
if the following additional assumptions are made, which are motivated by the shape of the
imaginary part ofG[ψ̄, ψ ],

(i) R[ψ ] should be proportional toD, i.e. vanishing forD = 0.
(ii) R[ψ ] should have derivatives no higher than of second order and occurring only in

the numerator.
(iii) R[ψ ] should be complex homogeneous of degree zero, i.e.R[αψ ] = R[ψ ] for all

α ∈ C.
Then one gets [8] for the real part the following family

R[ψ ] := D1
j ′0
ρ
+D2

ρ ′′

ρ
+D3

j2
0

ρ2
+D4

(j0ρ
′)

ρ2
+D5

(ρ ′)2

ρ2
. (32)

Together with (31) it yields a family of nonlinear Schrödinger equations (DG-family) which
depends on five additional real parameters. In this way, we get via Borel quantization with
(20) and (31) a quantum mechanical description of a system localized onS1. Its physical
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importance lies in the fact that it allows for the description of dissipation and of nonlinear
effects not only onS1 but analogously, e.g. onRn. We emphasize, that theq-deformation of
(31) which is derived in the following opens new possibilities which lead to further effects
in q-deformed quantum mechanics.

3. q-Deformation of the representations of the kinematical algebra onS1

In this section we construct aq-deformation of quantum Borel kinematics onS1. We present
plausible arguments and assumptions, denoted asq-assumptions, to replace all derivatives
by more realisticq-derivatives. In the limitq → 1 we expect the results obtained in
section 2.2. We parametrize functionsf on S1 as in section 2 byz = exp(iφ). This implies
∂φf (φ) = iNzf (z) and aq-analogue is

i[Nz]f (z) = i

q − q−1
(f (qz)− f (q−1z)) (33)

with limq→1[Nz] = Nz. It will arise naturally viaq-deformation of the kinematical algebra
as presented below.

3.1. Theq-Witt algebra and the inhomogeneousq-Witt algebra

The kinematical algebra onS1 is the inhomogeneous Witt algebra (18) in 2. To introduceq-
derivatives, we construct aq-deformation ofLn, i.e. aq-Witt algebra, which reproduces (19)
in the limit q → 1. There are results on theq-deformation of the Witt algebra [3, 15, 19],
but we need a version which is adapted to our purposes, i.e. we make theq-assumption
that the deformation should introduce as little extra parameters as possible and no extra
derivatives into the generators. The following 1-parameter set with parameterj ∈ R+ or
j ∈ N will meet these assumptions†:

L(j,θ)m := zm
[
j
(
Nz + m

2 + θ
)]

[j ]
. (34)

The extra parameterj is needed to close theq-deformed Witt generatorsL(j,θ)m to a Lie
algebra together with the generatorsTn which remain undeformed:

[L(j1,θ1)
m ,L(j2,θ2)

n ] =
[
j1
n
2 − j2

m
2

]
[j1+ j2]

[j1][j2]
L(j1+j2,θ3)
m+n +

[
j1
n
2 + j2

m
2

]
[j2− j1]

[j1][j2]
L(j2−j1,θ4)
m+n (35)

with

θ3 = j1θ1+ j2θ2

j1+ j2

θ4 = j1θ1− j2θ2

j1− j2

(36)

for j1 6= j2 and

[L(j,θ1)
m ,L(j,θ2)

n ] = [j (n−m)][2j ]

[j ]2
L
(

2j, θ1+θ22

)
m+n +

[
j n+m2

]
[j (θ2− θ1)]

[j ]2
Tm+n (37)

otherwise. Forq = 1 we get (19). We note that ourq-Witt algebra closes with respect to
the usual commutator and has a trivial Hopf algebra structure.

† We note that an ansatz with
[
j
(
Nz + m

2 + θ + iDm
)]

in (15) is possible only ifD is imaginary, which, however,
would lead to aP(X) which is not self-adjoint.
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Remark. In [15] another similarq-deformation of the Witt algebra has been presented.
The generators were given by

L(j,r,±)m = zm [j (Nz + m
2 )]∓

[j ]∓

[rNz]±
[r]±

(38)

with two differentq-number notations [n]− = [n] and

[n]+ = qn + q−n
2

(39)

and two parametersj, r ∈ R. This choice of aq-Witt algebra, however, is not useful here,
because of ourq-assumptions.

Concerning the inhomogeneous Witt algebra related to (34) we remark that the first
relation in (18) is not changed, becauseTn remains undeformed. Instead of the second
relation in (18) we have using (34):

L(j,θ)m Tn = TnL(j,θ+n)m (40)

which can be expressed as a commutator as follows:

[L(j,θ)m , Tn] = Tn(L(j,θ+n)m − L(j,θ)m ) (41)

So we get for aq-deformation of{T θn }⊂+{Lθn} an infinite dimensional vector space spanned
byL(j,θ)m andTn which is closed as a quadratic algebra. Hence, a deformation of subalgebras
A andB in a semidirect sumA⊂+B yields a deformation ofA⊂+B only if the deformation
of the semidirect sum is adequately defined, in our example with a quadratic commutator.

3.2. q-Deformation of quantum Borel kinematics onS1

We connect theq-deformed{T θn }⊂+{L(j,θ)n }-algebra with aq-deformation of the quantum
Borel kinematics (17). Since the subalgebra{Tn} is unchanged, we obtain forQ(f )

Qq(f ) =
∞∑

n=−∞
fnTn(= Q(f )). (42)

For P(X) the situation is complicated because it has projection parts in{Tn} as well as
{Lθn}. The projection part in{Lθn} is

P(X)|{Lθn} =
∞∑

n=−∞
XnL

θ
n. (43)

A q-deformation according to our deformation rule yields

P jq (X)|{L(j,θ)n } =
∞∑

n=−∞
XnL(j,θ)n . (44)

For the projection part in{Tn},

P(X)|{Tn} = i
∞∑

n=−∞
XnnDTn (45)

which formally contains a derivative

P(X)|{Tn} = i(Nz)
∞∑

n=−∞
XnDTn (46)
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it is consequent to apply the deformation rule also here. This is again aq-assumption. We
get

P jq (X)|{Tn} = i[Nz]
∞∑

n=−∞
XnDTn = i

∞∑
n=−∞

Xn[n]DTn (47)

i.e. the coefficientn is replaced by theq-number [n]. So we have for theq-quantum Borel
kinematics onS1

Qq(f ) =
∞∑

n=−∞
fnTn(= Q(f ))

P jq (X) =
∞∑

n=−∞
Xn(L(j,θ)n + i[n]DTn).

(48)

These deformed subalgebras can be combined in a semidirect sum and yield the following
commutation relations (note thatθ is fixed as in (20)):

[Qq(f ),Qq(g)] = 0 (49)

[Pq(X),Qq(f )] :=
∑
n,m

Xnfm([L(j,θ)n , Tm] + i[n]D[Tn, Tm])

=
∑
n,m

Xnfm[L(j,θ)n , Tm] (50)

[Pq(X), Pq(Y )] =
∑
n,m

XnYm([L(j,θ)n ,L(j,θ)m ].+iD([m][L(j,θ)n , Tm] − [n][L(j,θ)m , Tn])). (51)

Note that if we usen instead of [n] the corresponding relation for (51) would also hold.
However, in this case, the dynamics onS1

N derived later (section 4) would be given in terms
of two types of derivatives.

4. q-Deformation of representations of the Borel quantization onS1
N

4.1. q-Deformation of quantum Borel kinematics onS1
N

A restriction of the difference operator i[Nz], which due to (33) are appropriate discrete
analogues for the differential∂φ , onto anN -point discretizationS1

N of S1, is only possible
for particular values of the deformation parameterq. To see this, parametrize the equidistant
points inS1

N with l = 0, . . . , N −1. The wavefunctionsψ span a finite dimensional Hilbert
spaceHN of sequencesψ = (ψ(0), . . . , ψ(N − 1)). With a discrete Fourier transform we
have

ψ(l) =
N−1∑
n=0

ψnlz
n
l with znl = exp

(
2π i

N
nl

)
. (52)

The action of i[Nz] on suchψ(l) is i[Nz]ψ(l) = i
q−q−1

∑
n ψn,l((qzl)

n−(q−1zl)
n). It is only

well defined onS1
N if qzl andq−1zl are again lattice points. Together with the definition of

zl = z1
l in (52), thisenforcesfor q a value

q = exp

(
i
2π

N

)
(53)

i.e. q has to be anN th root of unity. We remark that in the representation theory of simple
quantum algebras a choiceqN = 1 is a special case leading to an extra structure, cf e.g.
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[4, 5]. Here,q with qN = 1 is the natural choice. As a consequence, the limitq → 1
coincides with the limitN →∞.

The scalar product inHN is

〈ψ, φ〉d := 1

N

∑
l

ψ̄(l)φ(l) (54)

with

〈zkl , zml 〉d =
1

N

∑
l

z̄kl z
m
l = δkm. (55)

For convenience we skip the indexl at thez-coordinates and writeψ(z) or ψ(l) for ψ(zl).
OnS1

N , the inhomogeneous Witt algebra is finitely generated and one finds for the symmetry
algebraQq(f ) andPq(X) onHN (the indexd means discrete)

Qd
q(f ) =

N−1∑
n=0

fnTn (= Q(f ))

P j,dq (X) =
N−1∑
n=0

Xn(L(j,θ)n + i[n]DTn).

(56)

j has to be restricted toN in order to have an action ofL(j,θ)n on HN . This is due to
the fact thatL(j,θ)n contains shift-operators of the formqjNz , which applied toψ ∈ HN
give qjNzψ(l) = ∑

n ψn,l(q
j zl)

n. But for zl as defined in (52) andq given by (53)qjzl
is only a lattice point if the above restriction forj is made. The parameterj in L(j,θ)n

leads to the fact thatL(j,θ)n contains—dependent onj—differences between different points
of S1

N , e.g. between next-nearest neighbours forj = 2 or even further points and not
only nearest neighbours (j = 1). This effect is called topological interaction and will be
discussed in section 4.4 in connection with the dynamics. We recall that the introduction of
j was mathematically necessary in order to close theq-Witt algebra so that this interaction
effect arises naturally. Finally we remark that theq-quantum Borel kinematics in (56) is
self-adjoint onHN .

4.2. q-Deformation of the dynamics onS1
N

The generalized Ehrenfest relation onHN (compare with (21)) reads

Dt 〈ψ(t, z),Qd
q(f )ψ(t, z)〉d = 〈ψ(t, z), P j,dq (Xgradq f )ψ(t, z)〉d (57)

whereDt denotes the time derivative. In this section we useDt ≡ ∂t throughout; a
possible replacement by aq-derivative is discussed in section 4.3. The operatorsQd

q(f )

andP j,dq (Xgradq f ) are given by (56) and the vector fieldXgradq f is derived fromXgradf via
a replacement of the derivative by aq-derivative (again aq-assumption), i.e. in

f (z) =
N−1∑
n=0

fnz
n

Xgradf =
N−1∑
n=0

infnz
n(iNz)

(58)

we replacen by [n] for the same reasons as in section 3.2. We find with (56)

P j,dq (Xgradq f ) =
N−1∑
n=0

i[n]fn(L(j,θ)n + i[n]DTn). (59)
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We note, that forq = 1 (57) reduces to (21) as expected. For the right-hand side of
(57) one obtains with (59)

〈ψ,P j,dq ((Xgradq f )ψ〉d =
1

N

∑
l,k,n,m

ψ̄kz
−k (i[n]fnL(j,θ)n zm −D[n]2fnz

nzm
)

= 1

N

∑
l,k,n,m

ψ̄kz
−kψmzmfnzni[(k −m)]

([
j
(
m+ k−m

2 + θ
)]

[j ]
+ iD[(k −m)]

)

=
〈
f,
∑
k,m

ψ̄kz
−kψmzmi[(k −m)]

([
j
(
m+ k−m

2 + θ
)]

[j ]
+ iD[(k −m)]

)〉
d .

(60)

Due to (55), all terms withk 6= n + m are zero and it was thus possible to replacen by
k −m.

Using that the left-hand side of (57) can be written as

Dt 〈ψ(t, z),Qd
q(f )ψ(t, z)〉d = 〈f,Dt ρ〉d (61)

because the functionsf do not depend ont (compare with the undeformed case in
section 2.2), we obtain

∂tρ =
∑
k,m

ψ̄kz
−kψmzmi[(k −m)]

([
j
(
m+ k−m

2 + θ
)]

[j ]
+ iD[(k −m)]

)
. (62)

For the first term in the bracket on the right-hand side, we useq-number calculus, i.e. for
a, b ∈ C, ε ∈ {±1},

[a + b] = [a]qεb + [b]q−εa (63)

in which ε opens the possibility for a later appropriate choice. We obtain∑
k,m

ψ̄kz
−kψmzmi[(k −m)]

[
j
(
m+ k−m

2 + θ
)]

[j ]
=
∑
k,m

ψ̄kz
−kψmzmi

1

[j ]
A(k,m, j, θ) (64)

where

A(k,m, j, θ) = [k]

[
j
(k + θ)

2

]
q−ε1m+ε2j

(m+θ)
2 − [m]

[
j
(m+ θ)

2

]
q−ε1k−ε2j

(k+θ)
2

+[k]

[
j
(m+ θ)

2

]
q−ε1m−ε2j

(k+θ)
2 − [m]

[
j
(k + θ)

2

]
q−ε1k+ε2j

(m+θ)
2 . (65)

With this, (62) can be written (recall (52)) as

∂tρ = i

[j ]

{(
[Nz]

[
j
(Nz − θ)

2

]
ψ̄

)
(q−ε1Nz+ε2j

(Nz+θ)
2 ψ)

−
(

[Nz]

[
j
(Nz + θ)

2

]
ψ

)
(qε1Nz+ε2j

(Nz−θ)
2 ψ̄)

−
(

[Nz]

[
j
θ

2

]
qε2j

(Nz−θ)
2 ψ̄

)
(q−ε3

j

2Nz−ε1Nzψ)

−
(

[Nz]

[
j
θ

2

]
qε2j

(Nz+θ)
2 ψ

)
(qε4

j

2Nz+ε1Nzψ̄)

−([Nz]qε2j
(Nz−θ)

2 ψ̄)

([
j
Nz

2

]
q−ε1Nzψ

)
qε3j

θ
2

+([Nz]qε2j
(Nz+θ)

2 ψ)

([
j
Nz

2

]
qε1Nzψ̄

)
qε4j

θ
2

}
−D([Nz]2ψ̄ψ) (66)
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whereqaNz acts as a shift-operator on functionsf (z), i.e.

qaNzf (z) = f (qaz). (67)

With the choiceε3 = −ε4 = ε2 in (66) ∂tρ is real. We introduce the notation

∂tρ ≡ B(ε1, ε2, j)−D([Nz]2ψ̄ψ). (68)

Since [j Nz2 ] is composed of shiftsq
j

2Nz , it is only well defined in our discrete setting—
for the same reasons as explained under (56)—if we restrictj ∈ N further to j ∈ 2N (a
q-assumption).

It is interesting to calculate at this stage theq-analoguejθq of the quantum mechanical
current density (25) by means of

−i[Nz]j
θ
q = ∂tρ for D = 0. (69)

We obtain:

j
(q,θ)

0 = 1

[j ]

([
j
(Nz + θ)

2

]
ψ

)(
qε2j

(Nz−θ)
2 ψ̄

)
− 1

[j ]

([
j
(Nz − θ)

2

]
ψ̄

)(
qε2j

(Nz+θ)
2 ψ

)
.

(70)

In the limit q → 1, i.e.N →∞, it reproduces the current (25) on ‘S1
∞’ = S1.

The D-independent termB(ε1, ε2, j) of (66) can be simplified, if we decompose
ψ = ψ1+ iψ2:

B(ε1, ε2, j) = 1

[j ]

{(
−[Nz]

[
j
Nz

2

]
ψ1

)
((qε1Nz + q−ε1Nz)qε2j

Nz
2 ψ2)

+
(

[Nz]

[
j
Nz

2

]
ψ2

)
((qε1Nz + q−ε1Nz)qε2j

Nz
2 ψ1)

+(−[Nz]q
ε2

j

2Nzψ2)

([
j
Nz

2

]
(qε1Nz + q−ε1Nz)ψ1

)
+([Nz]qε2

j

2Nzψ1)

([
j
Nz

2

]
(qε1Nz + q−ε1Nz)ψ2

)}
+ cos

(
2π

N
ε2

)[
j
θ

2

]{
(−[Nz]q

−ε2j
Nz
2 ψ1)((q

ε1Nz + q−ε1Nz)qε2j
Nz
2 ψ1) (71)

+ (−[Nz]q
−ε2j

Nz
2 ψ2)((q

ε1Nz + q−ε1Nz)qε2j
Nz
2 ψ2)

+ (−[Nz]q
ε2j

Nz
2 ψ1)((q

ε1Nz + q−ε1Nz)q−ε2j
Nz
2 ψ1)

+ (−[Nz]q
ε2j

Nz
2 ψ2)((q

ε1Nz + q−ε1Nz)q−ε2j
Nz
2 ψ2)

}
+ sin

(
2π

N
ε2

)[
j
θ

2

]{
([Nz]q

−ε2j
Nz
2 ψ1)((q

ε1Nz + q−ε1Nz)qε2j
Nz
2 ψ2)

+ (−[Nz]q
−ε2j

Nz
2 ψ2)((q

ε1Nz + q−ε1Nz)qε2j
Nz
2 ψ1)

+ ([Nz]qε2j
Nz
2 ψ2)((q

ε1Nz + q−ε1Nz)q−ε2j
Nz
2 ψ1)

+ (−[Nz]q
ε2j

Nz
2 ψ1)((q

ε1Nz + q−ε1Nz)q−ε2j
Nz
2 ψ2)

}
.

(72)
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The third and fourth line in (71) are nonlinear, all other terms are linear. The nonlinear
terms are independent ofθ and come in addition to the nonlinearity proportional toD which
arises from theD-dependent term in (68). We assume in the followingθ = 0 and indicate
the result forθ 6= 0.

Similarly as (27) in the undeformed case, equation (66) is a constraint for the evolution
equation forψ , i.e. for i∂tψ , and in analogy to the construction in section 2.2, the following
ansatz is plausible (compare with (26) and (27)) withHj

q linear inψ andGj
q [ψ̄, ψ ] nonlinear

in ψ , ψ̄ ,

i∂tψψ̄ = (Hj
q ψ)(Sψ̄)+ (Gj

q [ψ̄, ψ ]ψ)(Rψ̄)

−i∂t ψ̄ψ = (H̄ j
q ψ̄)(S̄ψ)+ (Ḡj

q [ψ̄, ψ ]ψ̄)(R̄ψ).
(73)

HereS andR are shift operators as in (67), which typically occur in aq-deformed theory.
Equation (73) reduces to (26) in the limitq → 1, if Hj

q andGj
q [ψ̄, ψ ] are such that they

giveH andG[ψ̄, ψ ] in this limit. Inserting shift operators in (73) is again aq-assumption.
The resultingq-Schr̈odinger equation is nonlinear because ofSψ̄ andS̄ψ and because of the
nonlinear functionGj

q [ψ̄, ψ ] of ψ andψ̄ , i.e. the nonlinearity comes from two sources. The
source coming from the shiftsS andR vanishes forq → 1—the nonlinear termGj

q [ψ̄, ψ ]
remains.

With Hj
q = H1 + iH2, Gj

q [ψ̄, ψ ] = G1 + iG2 (we skip the indexj in the following),
S = S1+ iS2, R = R1+ iR2, ψ as above and with (73) we obtain

∂tρ = (∂t ψ̄)ψ + (∂tψ)ψ̄
= i{(H̄ j

q ψ̄)(S̄ψ)+ (Ḡj
qψ̄)(Rψ)− (Hj

q ψ)(Sψ̄)− (Gj
qψ)(Rψ̄)}

= 2{(H1ψ1)(S2ψ1− S1ψ2)+ (H2ψ2)(S1ψ2− S2ψ1)

+(H2ψ1)(S1ψ1+ S2ψ2)+ (H1ψ2)(S1ψ1+ S2ψ2)}
+2{(G1ψ1)(R2ψ1− R1ψ2)+ (G2ψ2)(R1ψ2− R2ψ1)

+(G2ψ1)(R1ψ1+ R2ψ2)+ (G1ψ2)(R1ψ1+ R2ψ2)}. (74)

This has to be equated with (68), whereB(ε1, ε2, j) is given by (71). Together with (74)
we conclude for the linear part that

H1 = [Nz]

[
j
Nz

2

]
H2 = 0

S1 = 1
2(q

ε1Nz + q−ε1Nz)qε2j
Nz
2

S2 = 0.

(75)

The result is (j ∈ 2N, ε1, ε2 = ±1)

(Hj
q ψ)(Sψ̄) =

(
[Nz]

[
j
Nz

2

]
[j ]−1ψ

)
1

2
(qε1Nz + q−ε1Nz)qε2j

Nz
2 ψ̄ (76)

which leads for allj in the limit q → 1 to the Hamiltonian− 1
2

d2

dφ2 obtained in section 2.2.

The defining relation for the nonlinear termGj
q [ψ̄, ψ ] is given by the last two lines of

(74):

2{(G1ψ1)(R2ψ1− R1ψ2)+ (G2ψ2)(R1ψ2− R2ψ1)+ (G2ψ1)(R1ψ1+ R2ψ2)

+(G1ψ2)(R1ψ1+ R2ψ2)} ≡ G1h1(ψ1, ψ2, R1, R2)+G2h2(ψ1, ψ2, R1, R2)

(77)
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where
h1(ψ1, ψ2, R1, R2) = 2ψ1(R2ψ1− R1ψ2)+ 2ψ2(R1ψ1+ R2ψ2)

h2(ψ1, ψ2, R1, R2) = 2ψ2(R1ψ2− R2ψ1)+ 2ψ1(R1ψ1+ R2ψ2).
(78)

This has to be equated with the nonlinear terms in (68), hence with

C(ε1, ε2, j)−D([Nz]2ρ) (79)

whereC(ε1, ε2, j) is given by the third and fourth line in (71), i.e. the nonlinear terms in
B(ε1, ε2, j):

C(ε1, ε2, j) =
{
(−[Nz]q

ε2
j

2Nzψ2)

([
j
Nz

2

]
(qε1Nz + q−ε1Nz)ψ1

)
+([Nz]qε2

j

2Nzψ1)

([
j
Nz

2

]
(qε1Nz + q−ε1Nz)ψ2

)}
= 1

2i

{
(−[Nz]q

ε2
j

2Nzψ)

([
j
Nz

2

]
(qε1Nz + q−ε1Nz)ψ̄

)
+([Nz]qε2

j

2Nzψ̄)

([
j
Nz

2

]
(qε1Nz + q−ε1Nz)ψ

)}
. (80)

Dependent on the choice of the shiftR (q-assumption), different values forG1 andG2 can
be derived from the last line in (77) together with (79).G1 andG2 so obtained lead to
the nonlinear term in theq-Schr̈odinger equation (73) via the relation (compare with the
notation above (74))

FNL ≡ (Gj
q [ψ̄, ψ ]ψ)(Rψ̄) = ((G1+ iG2)ψ)(R1+ iR2)ψ̄. (81)

We emphasize that the nonlinear termFNL depends on the choices forR1 andR2.
A calculation shows that in the limitq → 1, the nonlinearity is independent onj ∈ 2N.

One always obtains the same imaginary part for the nonlinear functional, i.e. (28) which was
also derived withoutq-deformation. In addition, three types of real parts occur. With the
notationR = R1+ iR2 = (aqαNz+bqβNz)+ i(cqγNz+dqδNz) (recall also thatψ = ψ1+iψ2),
these limits are (for differenta, b, c, d, α, β, γ , δ) given by

(i)

A
ψ ′′ψ̄ ′ − ψ̄ ′′ψ ′
ψψ̄ ′ − ψ̄ψ ′ (82)

with A = ε2j (a+b)
8(aα+bβ) if R2 = 0 andA = −ε2j (c+d)

8(cγ+dδ) if R1 = 0. If R = S1, A = 1
2 holds.

(ii)

B
Dρ ′′

2ρ
(83)

i.e. equal to the limit of the imaginary part, withB = ± a+b
c+d . In the special case

R1 = R2 = 1, B = ±1 respectively.
(iii) For R = 1 (trivial shift operator) the real part remains undetermined by (74) as in

the undeformed case.
Finally, we give the result forθ 6= 0:

(i∂tψ)ψ̄ =
(

[Nz]

[
j
Nz

2

]
[j ]−1ψ

)
(S1ψ̄)− i

[
j
θ

2

]
[j ]−1

{
q−ε2

j

2 θ (i[Nz]q
−ε2

j

2Nzψ)

+qε2
j

2 θ (i[Nz]q
ε2

j

2Nzψ)q−ε2jNz

}
(S1ψ̄)+ FNL (84)

with S1 = 1
2(q

ε1Nz + q−ε1Nz)qε2j
Nz
2 . It is discussed in section 4.4.
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4.3. q-Deformation of the time-derivative

So far, we have considered the usual time-derivative∂t . However, it is also possible to
replace it by aq-time derivative. This could be useful in the following sense. If we
chooseR = S = S1 in (73) (which means that the real part of the nonlinearity is given
by (82)), then it is reasonable to ask whether one can construct aDq,t which compensates
this shift. The occurrence of a space shift inDq,t is in principle possible and sometimes
even necessary [7]. It relates thet andφ-dependence ofψ(φ, t) and leads to a restriction
of the evolution equation. Thisq-assumption corresponds to the following ansatz for a
q-Schr̈odinger equation

(iDq,tψ)(T ◦ Y ψ̄) = (Hj
q ψ)(Sψ̄)+ (Gj

qψ)(Rψ̄)

−(iDq,t ψ̄)(T̄ ◦ Ȳψ) = (H̄ j
q ψ̄)(S̄ψ)+ (Ḡj

qψ̄)(Rψ)
(85)

whereY , S andR are shifts in space andT and T̄ in time. One can chooseY = R = S =
S1 = 1

2(q
ε1Nz +q−ε1Nz)qε2j

Nz
2 (compare with (75)).Dq,t is constructed by a ‘shifted Leibniz

rule’ of the form

Dq,t (ψ̄ψ) = (Dq,t ψ̄)(T̄ ◦ Ȳψ)+ (Dq,t ψ)(T ◦ Y ψ̄) (86)

and is given by

Dq,t = S1
T̄ f (z)− Tf (z)

q − q−1
(87)

i.e. it is defined by the time shifts. With (86) and (66) we obtain the same Schrödinger
equation in the limitq → 1 as before, although theq-assumptions are different.

4.4. Discussion of theq-Schrödinger equation

The set ofq-Schr̈odinger equations (84) consists of nonlinear difference equations which
contain the parameterj . For q → 1, some of the nonlinearities vanish, but theD-
dependence remains also in the continuous case. It is remarkable that forq → 1 for
all choices forR andS the same nonlinear imaginary part, given by (28), is obtained.

Sincej occurs in the evolution equations in the combination [j

2Nz], its interpretation
is the following: whereas difference operators [Nz] usually operate on nearest-neighbour
points, also difference operators involving next nearest(j = 4) and further points come
into play, here. Thus the parameterj , which was introduced as a mathematical necessity
in (34) in order to close theq-Witt algebra, indicates the range of the interaction between
points inS1

N . In particular, the range of the interaction blows up withj .
It is instructive to write the set ofq-Schr̈odinger equations (84) directly as a difference

equation in dependence ofj . We find

(i∂tψ(l))ψ̄(l) = 1

2(q − q−1)
· 1

(qj − q−j )
×
(
ψ

(
l + 1+ j

2

)
− ψ

(
l + 1− j

2

)
− ψ

(
l − 1+ j

2

)
+ψ

(
l − 1− j

2

))(
ψ̄

(
l + 1+ ε2j

2

)
+ ψ̄

(
l − 1+ ε2j

2

))
+
[
j
θ

2

]
[j ]−1q−ε2

j

2 θ

(
ψ

(
l + 1− ε2j

2

)
− ψ

(
l − 1− ε2j

2

))
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ψ̄

(
l + 1+ ε2j

2

)
+ ψ̄

(
l − 1+ ε2j

2

))
1

2(q − q−1)

+
[
j
θ

2

]
[j ]−1qε2

j

2 θ

(
ψ

(
l + 1+ ε2j

2

)
− ψ

(
l − 1+ ε2j

2

))
(
ψ̄

(
l + 1− ε2j

2

)
+ ψ̄

(
l − 1− ε2j

2

))
1

2(q − q−1)
+ FNL. (88)

The Hamiltonian relates viaFNL the pointsl + 2, l andl − 2 independently ofj . In addition,
the pointsl+1+ j

2, l+1− j

2, l−1+ j

2 andl−1− j

2 are related, i.e. the coefficientj determines
the range of ‘the interaction’ (as shown in figure 1). ViaFNL no further dependences are
introduced and none are cancelled. To calculate the limitq → 1 one should use the Fourier
transformψ(l + m) = ∑N−1

n=0 ψl,n exp( 2π i
N
ln) exp( 2π i

N
lm) = ∑N−1

n=0 ψl,nz
n
l q

ln to exhibit the
q-dependence.

It is difficult to decide on the range of the interaction, i.e. onj , by physical
considerations. Thus, it is suggestive—also in view of the physical meaning of the algebra
generated by (49–51)—to assume that allj have to be treated on an equal footing, i.e. a
democratic regime:

Hq = 1

N

N−1∑
j=0

Hj
q . (89)

This is consistent with our theory and the nonlinear partG
j
q andP jq can be treated similarly.

5. Summary and outlook

The observation that measurements of momentum are related in classical physics to
two consecutive positional measurements have led us to the use of difference operators
for quantum mechanical momentum observables instead of differential operators. The
introduction of particular difference quotients calledq-derivatives was realized via a
q-deformation of the kinematical algebra onS1, i.e. the inhomogeneous Witt algebra,
and implemented in the framework of Borel quantization of a system moving on the
simplest compact configuration space, the circleS1 and its N -point discretizationS1

N .
Some additional assumptions, calledq-assumptions, were necessary to get a reasonable
q-deformation, similarly as for the nondeformed case some (but different) assumptions are
necessary to get a reasonable quantization. The generalized Ehrenfest theorem could be
formulated also in the deformed case onS1

N and it has been an implicit condition for
the evolution equation forψ , which has led to a set of difference Schrödinger equations
parametrized byj ∈ N, which are highly nonlinear difference equations for the time
evolution.

Figure 1. The broken lines give the interaction range forD = 0. The dotted lines indicate
which interactions appear in addition forD 6= 0.
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This last part is ofparticular interest. Forq → 1, the different time evolutions give the
usual Schr̈odinger equation, but with a fixed imaginaryand real nonlinear term,depending
on theq-assumptions. Borel quantization onS1 gives the same result, but with an arbitrary
real nonlinear term. So, theq-assumptions, necessary for our procedure, lead forq → 1 to
a fixed nonlinear term in the Schrödinger equation, which means that one can learn on the
continuous case if it is viewed as a limit of theq-deformed case.

We emphasize that the Schrödinger equation derived viaq-deformation already on the
level of the quantization of the kinematical algebra as presented here differs qualitatively
from those approaches, where discretization takes place via a substitution of differentials
by q-derivatives in the Schrödinger equation. The latter would lead in the framework of
Borel quantization as presented in section 2 (forD = 0) via a replacement ofddφ by the
q-derivativeDq in (3), to aq-Schr̈odinger equation of the form

i∂tψ(l) = − 1
2 D2

q ψ(l)− iθ Dq ψ(l) (90)

which differs considerably from our result (84).
Finally, we remark that our discussion is valid for a particular configuration space,S1

and its discretization; it would be interesting to derive a similar result for more general
configuration spaces. We leave this issue for a future investigation.
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